HW05 - H Atom and Electron Configuration

 $(\ensuremath{\underline{I}})$ This is a preview of the published version of the quiz

Started: Sep 18 at 12:47pm

Quiz Instructions

Homework 05 - H Atom and Electron Configuration

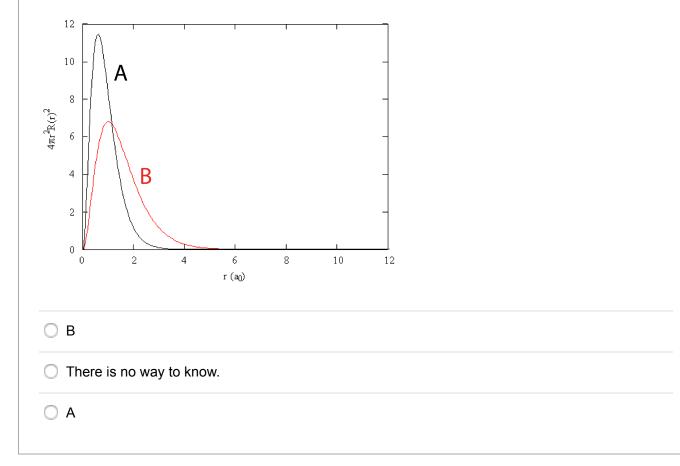
Question 1	1 pts
Which of the following experiments provided evidence that the electrons in atoms arranged in distinct energy levels?	are
O the results of the Millikan oil-drop experiment	
 the scattering of alpha particles by a metal foil 	
O the observation of line spectra from gas discharge tubes	
 the existence of elements with non-integer atomic weights 	

Question 2	1 pts
Assume n_1 and n_2 are two adjacent energy levels of an a with the longest wavelength would occur for which two va	
○ 7,6	
0 4,3	
2,1	
0 8,7	

Question 3	1 pts
Use the Rydberg formula for atomic hydrogen to calculate the wavelength of the p emitted in the transition of an electron from n=4 to n=2.	hoton
○ 94.9 nm	
○ 8.63 nm	
○ 205 nm	
○ 486 nm	

Question 4	1 pts
What is the name given to the spectroscope series to which the transition described question 3 belongs?	d in
O Balmer series	
O Paschen series	
O Lyman series	
O Brackett series	

Question 5	1 pts
In what region of light will the photons emitted in question 3 lie?	
○ visible, blue	
○ visible, red	


🔵 visible, yellow

O ultraviolet

Question 6

1 pts

The graph below shows the radial distribution plots for the 1s wavefunctions for H and He^+ . Which plot (A or B) is the 1s wavefunction for the He^+ ion?

Question 7	1 pts
What is the maximum number of electrons that can have the qua atom?	antum number n=2 in an
0 18	
0 6	

02		
08		

Question 8	1 pts
The three quantum numbers for an electron in a hydrogen atom in a certain state $n=4$, $l=2$, and $m_l=1$. The electron is located in what type of orbital?	e are
○ 3p	
○ 3d	
○ 4d	
O 4p	

Question 9	1 pts
The number that describes the main energy level of an electron in an atom is	
O the atomic number, Z.	
O the angular momentum quantum number, ℓ.	
◯ the principal quantum number, n.	
\bigcirc the magnetic quantum number, m _{ℓ} .	

Question 10 1 pts

Can an electron in an atom be in an energy level described by the set of quantum

numbers n=5, <i>t</i> =3, m _t =-2?		
\bigcirc No, because m _l cannot be negative.		
○ No, because ℓ must equal n-1.		
\bigcirc No, because m _l must equal ±1.		
O Yes.		

Question 11	1 pts
An electron in a 3d orbital could have which of the following quantum numbers?	
○ n=3, ℓ=1, m _ℓ =-1	
○ n=3, ℓ=3, m _ℓ =1	
○ n=3, <i>ℓ</i> =2, m _ℓ =0	
○ n=3, ℓ=2, m _ℓ =-3	

Question 12	1 pts
How many p electrons does Se (atomic number 34) possess?	
0 18	
○ 4	
0 16	
34	

Question 13	1 pts
For which H-atom wavefunction are you most likely to find the electron farthest from nucleus?	m the
О Зр	
○ 2p	
○ 4p	
O 2s	

Question 14	1 pts
The transition metals are elements with partially filled	
◯ p subshells.	
O f subshells.	
◯ s subshells.	
○ d subshells.	

Question 15	pts
Which element is predicted to have the ground-state electron configuration shown be [Ne] $3s^2 3p^4$	low?
O chlorine	
O aluminum	

O sulfur

Question 16	1 pts
Which of the following is the valence electronic structure for a halogen?	
\bigcirc ns ² nd ¹⁰	
\bigcirc ns ² np ⁵	
○ ns ² np ⁶	
O ns ²	

Question 17	1 pts
In the Aufbau order of occupancy of electronic energy levels, the level occupied ju 5p is	st after
○ 4d	
○ 3f	
○ 5d	
○ 6s	

Question 18	1 pts

The electron configuration for the Mn atom is...

\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ³		
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷		
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵		
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵		

Question 19

1 pts

The ground state electron configuration of a neutral silver atom is [Kr] $5s^1 4d^{10}$ instead of [Kr] $5s^2 4d^9$. This observation can be explained (theoretically) by the fact that...

○ the 4d subenergy level has higher energy than the 5s subenergy level.

O an enhanced stability is associated with filled sets of equivalent orbitals.

○ the magnetism measurement shows one unpaired electron.

O only one electron can occupy a 5s orbital.

Question 20	1 pts
Which of the following atoms has the largest radius?	
○ N	
⊖ CI	
○ F	
O Br	

Question 21	1 pts
As an atom's radius decreases	
its ionization energy increases.	
its ionization energy will either increase or decrease depending on whether you are going column or across a row.	up a
 its ionization energy does not change. 	
its ionization energy decreases.	

Question 22	1 pts
Which of the following would be expected to have the highest first ionization energ	IV?
O Na	
◯ Si	
◯ Xe	
⊖ CI	
O Ar	

Question 23	1 pts
How many s electrons does P (atomic number 15) possess?	
0 4	
○ 2	

()	5

Question 24	1 pts
How many values of the quantum number ℓ are possible when n=5?	
○ 5	
0 6	
0 4	
○ 7	

Question 25	1 pts
How many values of m_{ℓ} are allowed for an electron in a 5f subshell?	
0 5	
04	
07	
06	

Question 26	1 pts
How many values of m_{ℓ} are allowed for an electron in a 2s subshell?	

01	
O None of these.	
0 4	
03	

Question 27	1 pts
How many subshells are there in the shell with n=3?	
O 4	
0 1	
0 2	
3	

Question 28	1 pts
The diameter of the electron density of an atom is roughly	
None of these.	
○ 0.1 - 0.5 nm	
○ 10 - 50 nm	
○ 1 - 5 nm	

For which of the following elements would the size of the neutral atom (atomic radius) be the largest?

 Rb Na Sr Ca 				
○ Sr	O Rb			
	🔘 Na			
🔿 Ca	◯ Sr			
	◯ Ca			

Question 30	1 pts
Write an equation that represents the second ionization energy of nickel.	
\bigcirc Ni ⁺ (g) \longrightarrow Ni ²⁺ (g) + e ⁻	
\bigcirc Ni(g) \longrightarrow Ni ²⁺ (g) + e ⁻	
\bigcirc Ni(g) \longrightarrow Ni ⁺ (g) + e ⁻	
\bigcirc Ni(g) \longrightarrow Ni ²⁺ (g) + 2e ⁻	

Quiz saved at 12:48pm Submit Quiz